Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The bisphosphonate olpadronate inhibits skeletal prostate cancer progression in a green fluorescent protein nude mouse model.

PURPOSE: Metastatic bone disease is one of the major causes of morbidity and mortality in prostate cancer patients. Bisphosphonates are currently used to inhibit bone resorption and reduce tumor-induced skeletal complications. More effective bisphosphonates would enhance their clinical value.

EXPERIMENTAL DESIGN: We tested several bisphosphonates in a green fluorescent protein (GFP)-expressing human prostate cancer nude mouse model. The in vivo effects of four bisphosphonates, including pamidronate, etidronic acid, and olpadronate, on bone tumor burden in mice intratibially inoculated with PC-3-GFP human prostate cancer cells were visualized by whole-body fluorescence imaging and X-ray.

RESULTS: The PC-3-GFP cells produced extensive bone lesions when injected into the tibia of immunocompromised mice. The skeletal progression of the PC-3-GFP cell growth was monitored by GFP fluorescence and the bone destruction was evaluated by X-ray. We showed that 3,3-dimethylaminopropane-1-hydroxy-1,1-diphosphonic acid (olpadronate) was the most effective bisphosphonate treatment in reducing tumor burden as assessed by GFP imaging and radiography. The GFP tumor area and X-ray score significantly correlated. Reduced tumor growth in the bone was accompanied by reduced serum calcium, parathyroid hormone-related protein, and osteoprotegerin.

CONCLUSIONS: The serum calcium, parathyroid hormone-related protein, and osteoprotegerin levels were significantly correlated with GFP area and X-ray scores. Treatment with olpadronate reduced tumor growth in the bone measured by GFP and X-ray imaging procedures. Imaging of GFP expression enables monitoring of tumor growth in the bone and the GFP results complement the X-ray assessment of bone disease. The data in this report suggest that olpadronate has potential as an effective inhibitor of the skeletal progression of clinical prostate cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app