COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dysregulation of cellular calcium homeostasis in chemotherapy-evoked painful peripheral neuropathy.

Paclitaxel and vincristine are chemotherapeutic drugs that often evoke a long-lasting painful peripheral neuropathy. Using drugs that reduce intracellular or extracellular calcium ions (Ca2+), we investigated the hypothesis that impaired Ca2+ regulation contributes to the chemotherapy-evoked neuropathic pain syndrome. For comparison, we also tested rats with painful peripheral neuropathy caused by nerve trauma and to the anti-human immunodeficiency virus nucleoside analog 2',3'-dideoxycytidine (ddC). Normal naïve (without neuropathy), paclitaxel-treated, and vincristine-treated rats received the following intrathecal injections: TMB-8 (46 nmol), Quin-2 (1.8 nmol), EGTA (0.1 micromol), EGTA-am (0.1 micromol), and their vehicle controls. Chronic constriction injury (CCI) rats were examined after TMB-8 and Quin-2 injections, and ddC-treated rats were examined after receiving TMB-8. Mechano-allodynia and mechano-hyperalgesia were evaluated after each injection. Drug effects on heat hyperalgesia were also tested in CCI rats. All four Ca2+-reducing drugs significantly inhibited mechano-allodynia and mechano-hyperalgesia in the rats treated with paclitaxel, vincristine, or ddC, but no effects were seen in the CCI or naïve rats. We conclude that a similar abnormality of cellular Ca2+ homeostasis contributes to the pain caused by paclitaxel, vincristine, and ddC, but not posttraumatic painful peripheral neuropathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app