Add like
Add dislike
Add to saved papers

Collagen matrix in spinal cord injury.

The fibrous scar that develops after central nervous system (CNS) injury is considered a major impediment for axonal regeneration. It consists of a dense collagen IV meshwork, which serves as a binding matrix for numerous other extracellular matrix components and inhibitory molecules like proteoglycans and semaphorins, but also growth-promoting factors. Inhibition of collagen matrix formation in brain and spinal cord lesions leads to axonal regeneration and functional recovery, although collagen IV per se is not inhibitory for axonal outgrowth. This review focuses on the molecular properties of the collagen IV matrix and its interactions with various molecules that are expressed after CNS lesion. Moreover, studies on collagen expression and matrix formation after injury of regenerating versus non-regenerating nervous systems are reviewed. Major differences in collagen deposition in the CNS and the peripheral nervous system (PNS) and differences in specific cell responses to extracellular matrix deposition in the lesion area are discussed. Therapeutic treatments aiming at suppression of fibrous scarring have been shown to promote axon regeneration in various lesion paradigms of the mammalian CNS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app