JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Assimilation and allocation of carbon and nitrogen of thermal and nonthermal Agrostis species in response to high soil temperature.

We studied whether changes in the assimilation and allocation of carbon and nitrogen are associated with plant tolerance to high soil temperatures. Two Agrostis species, thermal Agrostis scabra, a species adapted to high-temperature soils in geothermal areas in Yellowstone National Park (USA), and two cultivars of a cool-season species, Agrostis stolonifera, L-93 and Penncross, were exposed to soil temperatures of 37 or 20 degrees C, while shoots were exposed to 20 degrees C. Net photosynthesis rate, photochemical efficiency, NO(3) (-)-assimilation rate and root viability decreased with increasing soil temperatures in both species. However, the decreases were less pronounced for A. scabra than for both A. stolonifera cultivars. Carbon investment in growth of plants exposed to 37 degrees C decreased more dramatically in both A. stolonifera cultivars than in A. scabra. Nitrogen allocation to shoots was greater in A. scabra than in both creeping bentgrass cultivars at 37 degrees C soil temperature. Our results demonstrate that plant tolerance to high soil temperature is related to efficient expenditure and adjustment of C- and N-allocation patterns between growth and respiration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app