Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Gametophytic self-incompatibility in Lycium parishii (Solanaceae): allelic diversity, genealogical structure, and patterns of molecular evolution at the S-RNase locus.

Heredity 2006 June
We characterized allelic diversity at the locus controlling self-incompatibility (SI) for a population of Lycium parishii (Solanaceae) from Organ Pipe National Monument, Arizona. Twenty-four partial sequences of S-RNase alleles were recovered from 25 individuals. Estimates of allelic diversity range from 23 to 27 alleles and, consistent with expectations for SI, individuals are heterozygous. We compare S-RNase diversity, patterns of molecular evolution, and the genealogical structure of alleles from L. parishii to a previously studied population of its congener L. andersonii. Gametophytic SI is well characterized for Solanaceae and although balancing selection is hypothesized to be responsible for high levels of allelic divergence, the pattern of selection varies depending on the portion of the gene considered. Site-specific models investigating patterns of selection for L. parishii and L. andersonii indicate that positive selection occurs in those regions of the S-RNase gene hypothesized as important to the recognition response, whereas positive selection was not detected for any position within regions previously characterized as conserved. A 10-species genealogy including S-RNases from a pair of congeners from each of five genera in Solanaceae reveals extensive transgeneric evolution of L. parishii S-RNases. Further, within Lycium, the Dn/Ds ratios for pairs of closely related alleles for intraspecific versus interspecific comparisons were not significantly different, suggesting that the S-RNase diversity recovered in these two species was present prior to the speciation event separating them. Despite this, two S-RNases from L. parishii are identical to two previously reported alleles for L. andersonii, suggesting gene flow between these species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app