Add like
Add dislike
Add to saved papers

Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress.

Photosynthetic performance, contents of chlorophyll and associated pigments, cellular damage and activities of antioxidative enzymes were investigated in two mustard (Brassica juncea L.) cultivars differing in photosynthetic capacity subjected to cadmium (Cd) stress. Exposure to Cd severely restricted the net photosynthetic rate (P(N)) of RH-30 compared to Varuna. This corresponded to the reductions in the activities of carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase (Rubisco) in both the cultivars. Decline in chlorophyll (Chl) (a+b) and Chl a content was observed but decrease in Chl b was more conspicuous in Varuna under Cd treatments, which was responsible for higher Chl a:b ratio. Additionally, the relative amount of anthocyanin remained higher in Varuna compared to RH-30 even in the presence of high Cd concentration, while percent pheophytin content increased in RH-30 at low Cd concentration. A higher concentration of Cd (100 mg Cd kg(-1) soil) resulted in elevated hydrogen peroxide (H(2)O(2)) content in both the cultivars. However, Varuna exhibited lower content of H(2)O(2) in comparison to RH-30. This was reflected in the increased cellular damage in RH-30, expressed by greater thiobarbituric acid reactive substances (TBARS) content and electrolyte leakage. The enhanced activities of antioxidative enzymes, ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) and also lower activity of superoxide dismutase (SOD) in Varuna alleviated Cd stress and protected the photosynthetic activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app