JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Label-free microelectronic PCR quantification.

Analytical Chemistry 2006 April 16
We present a robust and simple method for direct, label-free PCR product quantification using an integrated microelectronic sensor. The field-effect sensor can sequentially detect the intrinsic charge of multiple unprocessed PCR products and does not require sample processing or additional reagents in the PCR mixture. The sensor measures nucleic acid concentration in the PCR relevant range and specifically detects the PCR products over reagents such as Taq polymerase and nucleotide monomers. The sensor can monitor the product concentration at various stages of PCR and can generate a readout that resembles that of a real-time fluorescent measurement using an intercalating dye but without its potential inhibition artifacts. The device is mass-produced using standard semiconductor processes, can be reused for months, and integrates all sensing components directly on-chip. As such, our approach establishes a foundation for the direct integration of PCR-based in vitro biotechnologies with microelectronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app