Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells.

Transcriptional responses to hypoxia are primarily mediated by hypoxia-inducible factors (HIFs), HIF-1alpha and HIF-2alpha. The HIF-1alpha and HIF-2alpha subunits are structurally similar in their DNA binding and dimerization domains but differ in their transactivation domains, implying they may have unique target genes and require distinct transcriptional cofactors. Our previous results demonstrated that HIF-1alpha and HIF-2alpha regulate distinct target genes. Here, we report that HIF-2alpha is not transcriptionally active in embryonic stem (ES) cells, as well as possible inhibition by a HIF-2alpha-specific transcriptional repressor. Using DNA microarray analysis of hypoxia-inducible genes in wild-type (WT), Hif-1alpha(-)(/)(-), and Hif-2alpha(-)(/)(-) ES cells, we show that HIF-1alpha induces a large number of both confirmed and novel hypoxia-inducible genes, while HIF-2alpha does not activate any of its previously described targets. We further demonstrate that inhibition of HIF-2alpha function occurs at the level of transcription cofactor recruitment to endogenous target gene promoters. Overexpression of WT and, notably, a DNA-binding-defective HIF-2alpha mutant restores endogenous HIF-2alpha protein activity, suggesting that ES cells express a HIF-2alpha-specific corepressor that can be titrated by overexpressed HIF-2alpha protein. HIF-2alpha repression may explain why patients with mutations in the VHL tumor suppressor gene display cancerous lesions in specific tissue types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app