JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

1'-Acetoxychavicol acetate inhibits RANKL-induced osteoclastic differentiation of RAW 264.7 monocytic cells by suppressing nuclear factor-kappaB activation.

Osteoclastogenesis is commonly associated with various age-related diseases, including cancer. A member of the tumor necrosis factor superfamily, receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL), has been shown to play a critical role in osteoclast formation and bone resorption. Thus, agents that suppress RANKL signaling have a potential to suppress bone loss. In this report, we investigated the effect of 1'-acetoxychavicol acetate (ACA), a component of Alpina galanga, on RANKL signaling and consequent osteoclastogenesis in RAW 264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated NF-kappaB, and coexposure of the cells to ACA completely suppressed RANKL-induced NF-kappaB activation in a time- and concentration-dependent manner. The suppression of NF-kappaB by ACA was mediated through suppression of RANKL-induced activation of IkappaBalpha kinase, IkappaBalpha phosphorylation, and IkappaBalpha degradation. Furthermore, incubation of monocytic cells with RANKL induced osteoclastogenesis, and ACA suppressed it. Inhibition of osteoclastogenesis was maximal when cells were simultaneously exposed to ACA and RANKL and minimum when ACA was added 2 days after RANKL. ACA also inhibited the osteoclastogenesis induced by human breast cancer MCF-7 cells, multiple myeloma MM1 cells, and head and neck squamous cell carcinoma LICR-LON-HN5 cells. These results indicate that ACA is an effective blocker of RANKL-induced NF-kappaB activation and of osteoclastogenesis induced by RANKL and tumor cells, suggesting its potential as a therapeutic agent for osteoporosis and cancer-associated bone loss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app