JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Removal of methylene blue from aqueous solution by chaff in batch mode.

A new adsorbent system for removing methylene blue (MB) from aqueous solutions has been investigated. This new adsorbent is cereal chaff, an agriculture product in middle-west region in China. Variables of the system, including biosorption time, chaff dose, pH, salt concentration and initial MB concentration, were adopted to study their effects on MB removal. The results showed that as the dose of chaff increased, the percentage of MB sorption increased accordingly. There was no significant difference in the dye concentration remaining when the pH was increased from 4.0 to 11.0. The salt concentration has negative effect on MB removal. At the experimental range of MB concentration, the amount of MB adsorbed onto per unit mass of chaff (q(e)) is direct ratio to MB initial concentration (c(0)). The equilibrium data were analyzed using five equilibrium models, the Langmuir, the Freundlich, the Redlich-Peterson, the Koble-Corrigan and the Temkin isotherms. The results of non-linear regressive analysis are that the isotherms of Langmuir, Redlich-Peterson and Koble-Corrigan are better fit than the isotherms of Freundlich and Temkin at different temperatures according to the values of determined coefficients (R(2)) and Chi-square statistic (chi(2)). The maximum equilibrium capacities of chaff from Langmuir models are 20.3, 25.3 and 26.3 mg g(-1) at 298, 318 and 333K, respectively. Using the equilibrium concentration constants obtained at different temperatures, various thermodynamic parameters, such as DeltaG(0), DeltaH(0) and DeltaS(0), have been calculated. The thermodynamics parameters of MB/chaff system indicate spontaneous and endothermic process. It was concluded that an increase in temperature results in a bigger MB loading per unit weight of the chaff.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app