JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metabolic alterations in the dorsolateral prefrontal cortex after treatment with high-frequency repetitive transcranial magnetic stimulation in patients with unipolar major depression.

Neuroimaging studies suggest a specific role of anterior cingulate cortex (ACC) and left dorsolateral prefrontal cortex (DLPFC) in major depression. Stimulation of the latter by means of repetitive transcranial magnetic stimulation (rTMS) as an antidepressant intervention has increasingly been investigated in the past. The objective of the present study was to examine in vivo neurochemical alterations in both brain regions in 17 patients with unipolar major depression before and after 10 days of high-frequency (20Hz) rTMS of the left DLPFC using 3-tesla proton magnetic resonance spectroscopy. Six out of seventeen patients were treatment responders, defined as a 50% reduction of the Hamilton depression rating scale. No neurochemical alterations in the ACC were detected after rTMS. As compared to the non-responders, responders had lower baseline concentrations of DLPFC glutamate which increased after successful rTMS. Correspondingly, besides a correlation between clinical improvement and an increase in glutamate concentration, an interaction between glutamate concentration changes and stimulation intensity was observed. Our results indicate that metabolic, state-dependent changes within the left DLPFC in major depressive disorder involve the glutamate system and can be reversed in a dose-dependent manner by rTMS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app