Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors

Shing-Jong Lin, Song-Kun Shyue, Meng-Chun Shih, Ting-Hui Chu, Yung-Hsiang Chen, Hung-Hai Ku, Jaw-Wen Chen, Ka-Bik Tam, Yuh-Lien Chen
Atherosclerosis 2007, 190 (1): 124-34
Several antioxidant enzymes, including copper, zinc-superoxide dismutase (Cu, Zn-SOD) and catalase, have been suggested to be protective against the proliferation of vascular smooth muscle cells exposed to oxidative stress. In the present study, we investigated effects of Cu, Zn-SOD and/or catalase on oxLDL-induced proliferation of, and intracellular signaling in, human aortic smooth muscle cells (HASMCs). HASMCs were transfected with adenovirus carrying the human Cu, Zn-SOD gene and/or the human catalase gene. This resulted in a high level of Cu, Zn-SOD and/or catalase overexpression and decreased oxLDL-induced proliferation. Cu, Zn-SOD and/or catalase also arrested cell cycle progression, which was associated with decreased expression of cyclin D1, cyclin E, CDK2, and CDK4 and upregulation of p21(Cip1) and p27(Kip1). Phosphorylation studies on ERK1/2, JNK, and p38, three major subgroups of mitogen activator protein kinases, demonstrated that Cu, Zn-SOD and/or catalase overexpression suppressed ERK1/2 and JNK phosphorylation. Gel-mobility shift analysis showed that oxLDL caused an increase in the DNA binding activity of activator protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB), which was inhibited by Cu, Zn-SOD and/or catalase overexpression. These results provide the first evidence that overexpression of Cu, Zn-SOD and/or catalase in HASMCs attenuates the cell proliferation caused by oxLDL stimulation and that this inhibitory effect is mediated via downregulation of ERK1/2 and JNK phosphorylation and AP-1 and NF-kappaB inactivation. These observations support the feasibility of the increase of Cu, Zn-SOD and/or catalase expression in human smooth muscle cells as a means of protection against oxidant injury.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"