JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Deletion of presenilin 1 hydrophilic loop sequence leads to impaired gamma-secretase activity and exacerbated amyloid pathology.

gamma-Secretase processing of the amyloid precursor protein (APP) generates Abeta40 and Abeta42, peptides that constitute the principal components of the beta-amyloid plaque pathology of Alzheimer's disease (AD). The gamma-secretase activity is executed by a high-molecular-weight complex of which presenilin 1 (PS1) is an essential component. PS1 is a multi-pass membrane protein, and the large hydrophilic loop domain between transmembrane domains 6 and 7 has been shown to interact with various proteins. To determine the physiological function of the loop domain, we created a strain of PS1 knock-in mice in which the exon 10, which encodes most of the hydrophilic loop sequence, was deleted from the endogenous PS1 gene. We report here that the homozygous exon 10-deleted mice are viable but exhibit drastically reduced gamma-secretase cleavage at the Abeta40, but not the Abeta42, site. Surprisingly, this reduction of Abeta40 is associated with exacerbated plaque pathology when expressed on APP transgenic background. Thus, the PS1 loop plays a regulatory role in gamma-secretase processing, and decreased Abeta40, not increased Abeta42 is likely the cause for the accelerated plaque deposition in these animals. Our finding supports a protective role of Abeta40 against amyloid pathology and raises the possibility that impaired gamma-secretase activity could be the basis for AD pathogenesis in general.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app