Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: comparison with systems based on O3 and O3/H2O2.

A study was conducted on the efficacy of the system based on the simultaneous use of ozone and powdered activated carbon (PAC) in removing sodium dodecylbenzenesulphonate (SDBS) from drinking waters and on the influence of operational parameters (PAC dose, ozone dose and presence of radical scavengers [HCO3-]) on this process. Results obtained showed that low doses of PAC during SDBS ozonation markedly increased the rate of SDBS removal from the medium. These results are due to the combined effect of two processes: (i) SDBS adsorption on the activated carbon surface and (ii) transformation of the dissolved ozone into .OH radicals. At higher ozone and PAC doses, there was a higher rate of SDBS removal from the medium. The presence of HCO3- in the medium reduced the SDBS removal rate of the O3/PAC system. This finding confirms that the presence of PAC during SDBS ozonation favours ozone transformation into .OH radicals. Comparison of the O3/PAC system with systems based on the use of O3 or O3/H2O2 showed that the efficacy of the O3/PAC system to remove SDBS is much greater than that of the traditional oxidation methods. Thus, in the first 5 min of treatment (usual hydraulic retention time), the percentage of SDBS removed was 18% and 30% for the O3 and O3/H2O2 systems, respectively, compared with 70% for the O3/PAC system. SDBS ozonation in surface waters intended for human consumption demonstrated that the O3/PAC approach is the most efficacious of the studied systems, considerably increasing the SDBS removal rate and also reducing the concentration of dissolved organic carbon. Therefore, the results of this study show that the system based on O3/PAC is a highly attractive option for the treatment of drinking water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app