Collisional energy transfer and quenching of electronic excitation

S H Lin, H Eyring
Proceedings of the National Academy of Sciences of the United States of America 1975, 72 (11): 4205-8
The purpose of this paper has been to explore in a preliminary way the nature and mechanism of collisional energy transfer and quenching of electronic excitation. For this purpose, the Born approximation has been used, and the triplet-triplet and singlet-singlet transfer, and the triplet-triplet and singlet-singlet quenching have been studied. It has been shown theoretically that (i) the singlet-singlet transfer constants (or cross sections) are always larger than the triplet-triplet transfer constants (or cross sections) for the same system of donor and acceptor; (ii) for the singlet-singlet transfer, the observed cross section varies linearly with respect to the spectral overlap between the donor emission and the acceptor absorption; (iii) the reason that the quenching constants (or cross sections) are always smaller than the energy transfer constants (or cross sections) is due to the fact that for the quenching the vibration of the acceptor hardly participates in accepting the electronic excitation and for the energy transfer only part of the excited electron energy of the donor is converted into the energy of nuclear motion; and (iv) the polar acceptor molecules are better quenchers than nonpolar acceptor molecules.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"