JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Chest wall mechanics during pressure support ventilation.

INTRODUCTION: During pressure support ventilation (PSV) a part of the breathing pattern is controlled by the patient, and synchronization of respiratory muscle action and the resulting chest wall kinematics is a valid indicator of the patient's adaptation to the ventilator. The aim of the present study was to analyze the effects of different PSV settings on ventilatory pattern, total and compartmental chest wall kinematics and dynamics, muscle pressures and work of breathing in patients with acute lung injury.

METHOD: In nine patients four different levels of PSV (5, 10, 15 and 25 cmH2O) were randomly applied with the same level of positive end-expiratory pressure (10 cmH2O). Flow, airway opening, and oesophageal and gastric pressures were measured, and volume variations for the entire chest wall, the ribcage and abdominal compartments were recorded by opto-electronic plethysmography. The pressure and the work generated by the diaphragm, rib cage and abdominal muscles were determined using dynamic pressure-volume loops in the various phases of each respiratory cycle: pre-triggering, post-triggering with the patient's effort combining with the action of the ventilator, pressurization and expiration. The complete breathing pattern was measured and correlated with chest wall kinematics and dynamics.

RESULTS: At the various levels of pressure support applied, minute ventilation was constant, with large variations in breathing frequency/ tidal volume ratio. At pressure support levels below 15 cmH2O the following increased: the pressure developed by the inspiratory muscles, the contribution of the rib cage compartment to the total tidal volume, the phase shift between rib cage and abdominal compartments, the post-inspiratory action of the inspiratory rib cage muscles, and the expiratory muscle activity.

CONCLUSION: During PSV, the ventilatory pattern is very different at different levels of pressure support; in patients with acute lung injury pressure support greater than 10 cmH2O permits homogeneous recruitment of respiratory muscles, with resulting synchronous thoraco-abdominal expansion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app