EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Geometric and dosimetric evaluations of an online image-guidance strategy for 3D-CRT of prostate cancer.

PURPOSE: To evaluate an online image-guidance strategy for conformal treatment of prostate cancer and to estimate margin-reduction benefits.

METHODS AND MATERIALS: Twenty-eight patients with at least 16 helical computed tomography scans were each used in this study. Two prostate soft-tissue registration methods, including sagittal rotation, were evaluated. Setup errors and rigid organ motion were corrected online; non-rigid and intrafraction motion were included in offline analysis. Various clinical target volume-planning target volume (CTV-PTV) margins were applied. Geometrical evaluations included analyses of isocenter shifts and rotations and overlap index. Dosimetric evaluations included minimum dose and equivalent uniform dose (EUD) for prostate and gEUD for rectum.

RESULTS: Average isocenter shift and rotation were (dX,dY,dZ,theta) = (0.0 +/- 0.7,-1.1 +/- 4.0,-0.1 +/- 2.5,0.7 degrees +/- 2.0 degrees ) mm. Prostate motion in anterior-posterior (AP) direction was significantly higher than superior-inferior and left-right (LR) directions. This observation was confirmed by isocenter shift in perspectives AP (1.8 +/- 1.8 mm) and RL (3.7 +/- 3.0 mm). Organ motion degrades target coverage and reduces doses to rectum. If 2% dose reduction on prostate D(99) is allowed for 90% patients, then minimum 3 mm margins are necessary with ideal image registration.

CONCLUSIONS: Significant margin reduction can be achieved through online image guidance. Certain margins are still required for nonrigid and intrafraction motion. To further reduce margin, a strategy that combines online geometric intervention and offline dose replanning is necessary.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app