Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Comparative expression profiling in primary and immortalized endothelial cells: changes in gene expression in response to hydroxy methylglutaryl-coenzyme A reductase inhibition.

Immortalized cell lines offer significant logistical advantages over primary cells when used for in-vitro studies. Immortalized cells may, however, exhibit important differences relative to their primary cell counterparts. In this study, microarrays were used to make a genome-wide comparison between primary human umbilical vein endothelial cells (HUVECs) and EA.hy926, an immortalized HUVEC cell line, in their baseline properties and in their response to inhibition of the mevalonate pathway with an inhibitor of hydroxy methylglutaryl-coenzyme A reductase (statin). HUVECs and EA.hy926 were incubated with control medium, atorvastatin, mevalonate, or a combination of atorvastatin and mevalonate for 24 h. Gene expression profiles were obtained in duplicates using Affymetrix Human Genome U133A 2.0 arrays (Santa Clara, California, USA). Probe-sets were selected according to the following criteria: a twofold or greater increase/decrease in atorvastatin-treated cells compared with untreated cells; a twofold or greater reversal of the effect of atorvastatin by combined treatment with atorvastatin and mevalonate; no significant change in gene expression in cells treated with mevalonate alone compared with untreated cells. Most genes that were expressed by untreated HUVECs, were also expressed by untreated EA.hy926 cells. EA.hy926 cells, however, constitutively expressed a large number of additional genes, many of which were related to cell cycle control and apoptosis. Atorvastatin induced differential expression (> or = twofold) of 103 genes in HUVECs (10 up, 93 down) and 466 genes in EA.hy926 cells (198 up, 268 down). Applying the above selection criteria, thrombomodulin and tissue plasminogen activator were up-regulated in both cell types, whereas, connective tissue growth factor, thrombospondin-1, and cysteine-rich angiogenic inducer 61 were down-regulated. In conclusion, EA.hy926 cells retain most of the characteristics of endothelial cells under baseline conditions as well as after treatment with atorvastatin. It is necessary, however, to carefully select and validate changes in genes that are the focus of studies when using EA.hy926 cells. While this cell line is highly useful in studies on some genes, including genes encoding molecules involved in regulating thrombohemorrhagic homeostasis, they appear to be less suited for studies focused on other genes, particularly those involved in the regulation of cell proliferation and apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app