Add like
Add dislike
Add to saved papers

Reversal of profound rocuronium neuromuscular blockade by sugammadex in anesthetized rhesus monkeys.

Anesthesiology 2006 April
BACKGROUND: Reversal of neuromuscular blockade can be accomplished by chemical encapsulation of rocuronium by sugammadex, a synthetic gamma-cyclodextrin derivative. The current study determined the feasibility of reversal of rocuronium-induced profound neuromuscular blockade with sugammadex in the anesthetized rhesus monkey using train-of-four stimulation.

METHODS: Four female rhesus monkeys each underwent three experiments. In each experiment, first, a 100-microg/kg dose of rocuronium was injected and spontaneous recovery was monitored. After full recovery, a 500-microg/kg dose of rocuronium was injected. Up to this point, all three experiments in a single monkey were identical. One minute after this rocuronium injection, either one of the two tested dosages of sugammadex (1.0 or 2.5 mg/kg) was injected or saline was injected.

RESULTS: Injection of 100 microg/kg rocuronium resulted in a mean neuromuscular blockade of 93.0% (SD = 4%), and profound blockade was achieved by injection of 500 microg/kg. In all experiments, a 100% neuromuscular blockade was achieved at this dose. After injection of the high rocuronium dose, the 90% recovery of the train-of-four ratio took 28 min (SD = 7 min) after saline, 26 min (SD = 9.5 min) after 1 mg/kg sugammadex, and 8 min (SD = 3.6 min) after 2.5 mg/kg sugammadex. Signs of residual blockade or recurarization were not observed. Injection of sugammadex had no significant effects on blood pressure or heart rate.

CONCLUSIONS: Chemical encapsulation of rocuronium by sugammadex is a new therapeutic mechanism allowing effective and rapid reversal of profound neuromuscular blockade induced by rocuronium in anesthetized rhesus monkeys.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app