Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1.

The requirement for Notch signaling in vasculogenesis and angiogenesis is well documented. In a previous study, we showed that activation of the Notch pathway in endothelial cells induces differentiation-associated growth arrest; however, the underlying mechanism remains to be elucidated. Here, we show that activation of the Notch pathway by either stimulation of cell surface Notch receptors with crosslinked soluble delta-like 4 (sDll4)/Jagged1 (sJag1) or constitutive expression of the Notch1 intracellular domain (N(IC)) suppresses endothelial cell proliferation. This suppression is mediated by the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt pathways. Following Notch1 activation, both pathways were suppressed in endothelial cells, and alterations in MAPK or PI3K/Akt pathway activity reversed Notch1-induced growth inhibition. Furthermore, we found the effect of Notch1 on endothelial cells to require Mastermind-like (MAML). Overexpression of a dominant-negative mutant of MAML1 antagonized the effects of activated Notch1 on the MAPK and PI3K/Akt pathways. Ectopic expression of Hairy/Enhancer of Split 1 (HES1) consistently reproduced the inhibitory effect of N(IC) on endothelial cell proliferation. Together, our data demonstrate that the Notch/MAML-HES signaling cascade can regulate both MAPK and PI3K/Akt pathways, which suggests a molecular mechanism for the inhibitory effect of Notch signaling on endothelial cell proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app