Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Organic material: the primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments.

Estuarine environments that have no direct sources of mercury (Hg) pollution may have sediment concentrations of methylmercury (MeHg) as high as those of polluted marine environments. In this study we examined the biogeochemical factors affecting net methylation and sediment MeHg concentrations in an unpolluted estuarine environment, the Ore River estuary, which discharges into the Bothnian Bay (20-120 ng total Hg g(-1) dry sediment, salinity 3-5% per hundred). We analyzed the spatial and temporal differences in surface sediment profiles of MeHg concentration, Hg methylation, MeHg demethylation, and concentrations of sulfide and oxygen between accumulation and erosion type bottoms. The main difference between the bottoms studied was in the proportion of organic material (OM) in the sediment, ranging between 0.8% and 10.8%. The pore water sulfide concentration profiles also differed considerably between sites and seasons, from 0 to 20 microM, with 100 microM as the extreme maximum. The sediment MeHg concentration profiles (0-10 cm) mostly varied between 0.1 and 7 ng g(-1) dry weight (dw, as Hg). The MeHg demethylation rates were relatively low and the depth profiles of the rates were relatively constant over season, site, and depth. In contrast, both rates and depths of maximum Hg methylation differed between the bottoms. The results indicate that the amount of OM accumulated at the bottoms was the main factor affecting net MeHg production, while the total amount of Hg had little or no influence on the amount of MeHg in the sediment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app