Add like
Add dislike
Add to saved papers

Electron donor-bridge-acceptor molecules with bridging nitronyl nitroxide radicals: influence of a third spin on charge- and spin-transfer dynamics.

Appending a stable radical to the bridge molecule in a donor-bridge-acceptor system (D-B-A) is potentially an important way to control charge- and spin-transfer dynamics through D-B-A. We have attached a nitronyl nitroxide (NN*) stable radical to a D-B-A system having well-defined distances between the components: MeOAn-6ANI-Ph(NN*)-NI, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, Ph = phenyl, and NI = naphthalene-1,8:4,5-bis(dicarboximide). MeOAn-6ANI, NN*, and NI are attached to the 1, 3, and 5 positions of the Ph bridge. Using both time-resolved optical and EPR spectroscopy, we show that NN* influences the spin dynamics of the photogenerated triradical states (2,4)(MeOAn(+)*-6ANI-Ph(NN*)-NI(-)*), resulting in slower charge recombination within the triradical compared to the corresponding biradical lacking NN*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn(+)(*) and NI(-)(*) is not altered by the presence of NN*, which only accelerates radical pair intersystem crossing. Charge recombination within the triradical results in the formation of (2,4)(MeOAn-6ANI-Ph(NN*)-(3)NI), in which NN* is strongly spin-polarized. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, net spin polarization appears on NN* with the same time constant as describes the photogenerated radical ion pair decay. This effect is attributed to antiferromagnetic coupling between NN* and the local triplet state (3)NI, which is populated following charge recombination. This requires an effective switch in the spin basis set between the triradical and the three-spin charge recombination product having both NN* and (3)NI present.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app