JOURNAL ARTICLE

Involvement of protein kinases on the upregulation of endothelin receptors in rat basilar and mesenteric arteries

Roya Jamali, Lars Edvinsson
Experimental Biology and Medicine 2006, 231 (4): 403-11
16565436
Endothelin(B) (ET(B)) receptors are upregulated in experimental stroke or after 24 hrs of organ culture. This upregulation is manifested both as stronger contraction and as an increase in ET(B) receptor messenger RNA (mRNA) levels. The present study was designed to evaluate the importance of protein kinases (c-Jun N-terminal kinase [JNK], protein kinase C [PKC], and extracellular signal-regulated kinase [ERK1/2]) in ET(B) receptor upregulation after organ culture. Rat basilar and mesenteric arteries were incubated for 24 hrs in Dulbecco's modified Eagle's medium (DMEM) with or without the PKC inhibitor, RO-31-7549; the ERK1/2 inhibitor, SB386023; or the JNK inhibitor, SP600125, added 3, 6, or 12 hrs after initiation of incubation. Subsequently, vessel segments were mounted in myographs and the contractile responses to ET-1 and sarafotoxin 6c were studied. The ET(B) and ET(A) receptor mRNA levels were determined with a real-time polymerase chain reaction (PCR). The cellular localization and protein level of ET(B) receptors were evaluated by immunohistochemistry. The PKC and ERK1/2 inhibitors attenuated the contraction induced by S6c in the basilar arteries more than in the mesenteric arteries. The efficiency of the inhibitors was proportional to the incubation time. Real-time PCR showed a decrease in the ET(B) receptor mRNA levels in arteries treated with PKC or ERK inhibitors. The JNK inhibitor had a significant inhibitory effect on ET(B) receptor upregulation in the basilar arteries. Immunohistochemistry revealed that the ET(B) receptor upregulation occured in the smooth-muscle cells and that it had the same pattern as in the quantitative PCR. Our results show that the PKC, ERK1/2, and JNK are more important for the upregulation of contractile ET(B) receptors in cerebral arteries compared with mesenteric arteries. ERK1/2 seems to be more important for the ET(B) receptor upregulation, as compared with PKC and JNK. The evaluation of the time dependency suggests that the phenomenon can be reversed even after its initiation.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16565436
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"