Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

15-Methoxypinusolidic acid from Biota orientalis attenuates glutamate-induced neurotoxicity in primary cultured rat cortical cells.

15-Methoxypinusolidic acid (15-MPA), a pinusolide derivative isolated from Biota orientalis (Cupressaceae) leaves prevented glutamate-induced excitotoxicity in primary cultured rat cortical cells in vitro. 15-MPA had more selectivity in protecting neurons against N-methyl-D-aspartate (NMDA)-induced neurotoxicity than that induced by kainic acid (KA). The glutamate-induced increase of intracellular calcium ([Ca2+]i) in cortical cells was effectively reduced by 15-MPA. Moreover, 15-MPA could successfully reduce the subsequent overproduction of nitric oxide (NO) and the level of cellular peroxide, and inhibit glutathione (GSH) depletion and lipid peroxidation induced by glutamate in our cultures. Collectively, these results suggested that 15-MPA attenuated glutamate-induced excitotoxicity via stabilization of [Ca2+]i homeostasis and suppression of oxidative stress possibly through the actions on the NMDA receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app