Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

C-terminal-truncated microdystrophin recruits dystrobrevin and syntrophin to the dystrophin-associated glycoprotein complex and reduces muscular dystrophy in symptomatic utrophin/dystrophin double-knockout mice.

C-terminal-truncated (DeltaC) microdystrophin is being developed for Duchenne muscular dystrophy gene therapy. Encouraging results have been achieved in the mdx mouse model. Unfortunately, mdx mice do not display the same phenotype as human patients. Evaluating DeltaC microdystrophin in a symptomatic model will be of significant relevance to human trials. Utrophin/dystrophin double-knockout (u-dko) mice were developed to model severe dystrophic changes in human patients. In this study we evaluated the therapeutic effect of the DeltaR4-R23/DeltaC microdystrophin gene (DeltaR4/DeltaC) after serotype-6 adeno-associated virus-mediated gene transfer in neonatal u-dko muscle. At 2 months after gene transfer, the percentage of centrally nucleated myofiber was reduced from 89.2 to 3.4% and muscle weight was normalized. Furthermore, we have demonstrated for the first time that DeltaC microdystrophin can eliminate interstitial fibrosis and macrophage infiltration and restore dystrobrevin and syntrophin to the dystrophin-associated glycoprotein complex. Interestingly neuronal nitric oxide synthase was not restored. The most impressive results were achieved in muscle force measurement. Neonatal gene therapy increased twitch- and tetanic-specific force. It also brought the response to eccentric contraction-induced injury to the normal range. In summary, our results suggest that the DeltaR4/DeltaC microgene holds great promise in preventing muscular dystrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app