Add like
Add dislike
Add to saved papers

Relationship between physiological profiles and on-ice performance of a National Collegiate Athletic Association Division I hockey team.

Ice hockey is a game that relies heavily on both aerobic and anaerobic energy production systems as players perform in various game situations. However, we found no studies evaluating the relationship between a player's physical condition and individual success in games throughout a competitive hockey season. The purpose of this study was to determine the relationship between a player's aerobic fitness (VO(2)max), blood lactate, and percent body fat to his total minutes played during a season (Tmin) and net scoring chances (SCn). Players' (N = 29) preseason VO(2)max, lactate at the fourth stage of an incremental treadmill test (Lac 4), and percent body fat values from the 1999- 2001 National Collegiate Athletic Association Division I hockey seasons were archived and retrieved for this study. The players' Tmin and SCn were used as the on-ice performance variables and were compared with their fitness measures. Lactate at 4th treadmill stage (r = 0.41, p < 0.03) and percent body fat (r = 0.39, p < 0.03) but not VO(2)max (r = 0.20, p < 0.24) were significantly related to Tmin. Both Lac 4 and percent body fat were entered into a stepwise regression model that accounted for 25% of the variance in Tmin among players (p < 0.02). Both VO(2)max (r = 0.41, p < 0.03) and Lac 4 (r = 0.33, p < 0.05) were significantly related to the players' SCn, but percent body fat was not (r = 0.10, p < 0.57). Only VO(2)max significantly predicted the players' SCn, accounting for 17% of the variance. These findings suggest a relationship between a player's conditioning level and on-ice performance. Our results support the value of implementing seasonal physiological testing, which will help strength and conditioning coaches make individualized modifications to a player's fitness regimens in an effort to improve specific physiological attributes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app