RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Fibroblast heterogeneity in collagenolytic response to cyclosporine.
Journal of Cellular Biochemistry 1991 June
To investigate the mechanism of cyclosporine (CS)-induced fibrotic gingival enlargement, the effect of CS on the collagenolytic activities of 14 different human gingival fibroblast strains derived from healthy individuals with non-inflammed gingiva was examined in vitro. There was marked heterogeneity among individuals in basal levels of collagenase activity, and there was also variation among the subpopulations derived from one strain. Fibroblasts from different individuals also varied markedly in their collagenolytic response to CS (0.1 to 0.75 micrograms/ml). In most strains, CS decreased collagenase activity, but in some, the drug caused no change or significantly increased activities. In most of the subpopulations CS significantly decreased collagenolytic activity. Two of the fibroblasts strains and the subpopulations described above were examined for the production of immunoreactive collagenase and tissue inhibitor of metalloproteinase (TIMP). The two strains made similar amounts of collagenase, but differed markedly in TIMP levels; CS affected their collagenase production differently but had similar effects on TIMP. Among the subpopulations there was variation in the production of collagenase, although none made detectable levels of TIMP; they also varied in the production of both proteins in response to CS. In two of the subpopulations and in both strains at some concentrations, the effect of CS on the relative levels of collagenase and TIMP could account for the decreased collagenase activity; i.e., the level of collagenase was unchanged or decreased, and TIMP production was unchanged or increased. This study demonstrates the variation among individuals as well as intrastrain heterogeneity of human gingival fibroblasts with regard to collagenase activity and the production of collagenase and TIMP. The heterogeneity of the collagenolytic response of different gingival fibroblast strains and their subpopulations to CS treatment may partly explain the susceptibility of only some individuals to CS-induced gingival enlargement.
Full text links
Trending Papers
Fluid Resuscitation in Patients with Cirrhosis and Sepsis: A Multidisciplinary Perspective.Journal of Hepatology 2023 March 2
Glucagon-Like Peptide 1 Receptor Agonists Versus Sodium-Glucose Cotransporter 2 Inhibitors for Atherosclerotic Cardiovascular Disease in Patients With Type 2 Diabetes.Cardiology Research 2023 Februrary
Management of Heart Failure With Preserved Ejection Fraction in Elderly Patients: Effectiveness and Safety.Curēus 2023 Februrary
Evaluation and Management of Pulmonary Hypertension in Noncardiac Surgery: A Scientific Statement From the American Heart Association.Circulation 2023 March 17
What's New in the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD).Journal of Clinical Medicine 2023 Februrary 27
Physical interventions to interrupt or reduce the spread of respiratory viruses.Cochrane Database of Systematic Reviews 2023 January 31
Long COVID: major findings, mechanisms and recommendations.Nature Reviews. Microbiology 2023 January 14
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app