Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The effects of microinjection of morphine into thalamic nucleus submedius on formalin-evoked nociceptive responses of neurons in the rat spinal dorsal horn.

Previous studies have indicated that the thalamic nucleus submedius (Sm), as an ascending component, is involved in an endogenous analgesic system consisting of spinal cord-Sm-ventrolateral orbital cortex (VLO)-periaqueductal gray (PAG)-spinal cord loop. To investigate the action of opioid in this antinociception pathway, the effects of microinjection of morphine and naloxone into the Sm on the formalin-induced nociceptive responses of neurons in the spinal dorsal horn were determined in the anesthetized rat. Formalin (5%, 50 microl) subcutaneously injected into unilateral hindpaw produced a biphasic nociceptive response which was similar to that obtained from assessing the nociceptive behavior either in the relative magnitude of response or the time course. A unilateral microinjection of morphine (5 microg, 0.5 microl) into the Sm 15 min after formalin injection significantly depressed the second phasic responses of neurons induced by formalin, and this effect was significantly attenuated by pre-microinjection of opioid receptor antagonist naloxone (1 microg, 0.5 microl) into the same site. The results suggest that the Sm is involved in opioid receptor-mediated antinociceptive effect on the persistent nociception through depression of the nociceptive transmission at the spinal cord level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app