JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Management of mechanical ventilation in acute severe asthma: practical aspects.

BACKGROUND: Acute severe asthma induces marked alterations in respiratory mechanics, characterized by a critical limitation of expiratory flow and a heterogeneous and reversible increase in airway resistance, resulting in premature airway closure, lung, and chest wall dynamic hyperinflation and high intrinsic PEEP.

DISCUSSION: These abnormalities increase the work of breathing and can lead to respiratory muscle fatigue and life-threatening respiratory failure, in which case mechanical ventilation is life-saving. When instituting mechanical ventilation in this setting, a major concern is the risk of worsening lung hyperinflation (thereby provoking barotrauma) and inducing or aggravating hemodynamic instability. Guidelines for mechanical ventilation in acute severe asthma are not supported by strong clinical evidence. Controlled hypoventilation with permissive hypercapnia may reduce morbidity and mortality compared to conventional normocapnic ventilation. Profound pathological alterations in respiratory mechanics occur during acute severe asthma, which clinicians should keep in mind when caring for ventilated asthmatics.

CONCLUSION: We focus on the practical management of controlled hypoventilation. Particular attention must be paid to ventilator settings, monitoring of lung hyperinflation, the role of extrinsic PEEP, and administering inhaled bronchodilators. We also underline the importance of deep sedation with respiratory drive-suppressing opioids to maintain patient-ventilator synchrony while avoiding as much as can be muscle paralysis and the ensuing risk of myopathy. Finally, the role of noninvasive positive pressure ventilation for the treatment of respiratory failure during severe asthma is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app