Add like
Add dislike
Add to saved papers

Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins.

Increased salinity is a stringent problem to crop production while seed pretreatment can effectively induce salt tolerance in plants. Hydrogen peroxide (H(2)O(2)), a stress signal molecule, was evaluated as seed treatment to produce the metabolic changes, which could lead to improved salt tolerance in wheat. Soaking in 1, 40, 80 and 120 microM H(2)O(2) revealed a low penetration, reaching maximum at 5h (2.58+/-0.23 micro mol g(-1) fresh seeds at 120 microM) and declining thereafter to the level of water control by 8h. This revealed the activation of antioxidants and H(2)O(2) scavenging in seed after 5h. Seeds treated with 1-120 microM H(2)O(2) for 8h and germinated in saline (150 mM NaCl) medium curtailed the mean germination time (MGT) being even less than water controls. Level of H(2)O(2) in seedlings arising from H(2)O(2)-treated seeds grown under salinity was markedly lower than salinized controls, suggesting the operation of antioxidant system in them. These seedlings exhibited better photosynthetic capacity, particularly the stomatal conductance (gs), thus improving the leaf gas exchange due to stomatal component of photosynthesis. Moreover, H(2)O(2) treatment improved leaf water relations and maintained turgor. Although Na(+) and Cl(-) content increased due to salinity, H(2)O(2)-treated seedlings displayed greater tissue K(+), Ca(2+), NO(3)(-) PO(4)(3-) levels and improved K(+):Na(+) ratio. H(2)O(2) treatment enhanced the membrane properties, as revealed from greatly reduced relative membrane permeability (RMP) and less altered ion leakage pattern (comparable to water controls). Seedlings exhibited the expression of two heat-stable (stress) proteins with apparent molecular masses of 32 and 52 kDa. Results suggest that H(2)O(2) signals the activation of antioxidants in seed, which persists in the seedlings to offset the ion-induced oxidative damage. These changes led to the expression of stress proteins and improved physiological attributes, which supported the seedling growth under salinity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app