JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High ambient glucose levels modulates the production of MMP-9 and alpha5(IV) collagen by cultured podocytes.

Recent evidences have demonstrated an important role for glomerular visceral epithelial cell (podocyte) in the development and progression of diabetic nephropathy. We investigated the high-glucose (HG)-triggered signaling pathway and its role in matrix metalloproteinase (MMP) production in murine podocytes. The activity of 92-kDa (MMP-9) gelatinase, but not of 72 kDa (MMP-2), in an HG medium significantly increased during incubation of 2 to 3 days and decreased during incubation of more than 5 days revealed by Gelatin zymography. Opposite to the increases in MMP-9 activity, HG medium produced significant decreases in the protein levels of alpha5(IV) collagen. Changes in MMP-9 activity were associated with the same pattern as MMP-9 mRNA levels in podocytes exposed to HG media. HG medium rapidly activated ERK1/2 MAPK in podocytes. Moreover, ERK1/2 activation was required for HG-induced enhancement of MMP-9 activity and a decrease in the level of alpha5(IV) collagen. HG incubation rapidly induced an increase in the nuclear accumulation of Ets-1 protein. Blocking the ERK pathway suppressed HG-induced expression and nuclear accumulation of transcriptional factor Ets-1, and MMP-9 mRNA expression. We suggest that short- or long-term exposure to HG concentrations increases or decreases MMP-9 production and alpha5(IV) collagen expression in podocytes, this may contribute to the GBM abnormality caused by an imbalance in extracellular matrix (ECM) synthesis and degradation, and may play a critical role in the pathogenesis of proteinuria in diabetic nephropathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app