Journal Article
Review
Add like
Add dislike
Add to saved papers

Electrostatics calculations: latest methodological advances.

Electrostatics plays a major role in the stabilization and function of biomolecules; as such, it remains a major focus of theoretical and computational studies of macromolecules. Electrostatic interactions are long range, and strongly dependent on the solvent and ions surrounding the biomolecule under study. During the past year, progress has been reported in the treatment of electrostatics in explicit and implicit solvent models. Interesting new developments of explicit solvent models include more efficient Ewald summation methods, as well as alternative approaches based on reaction field theory, periodic images and Euler summations. Implicit solvent models remain divided into those that solve the Poisson-Boltzmann equation numerically and those based on the generalized Born formalism. Both approaches are now included in molecular dynamics simulations and their accuracies may be assessed by direct comparison against experimental data. It is worth mentioning the recent development of web interfaces that facilitate access to and usage of existing tools for computing electrostatic interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app