JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Fully integrated miniature device for automated gene expression DNA microarray processing.

Analytical Chemistry 2006 March 16
A DNA microarray with 12,000 features was integrated with a microfluidic cartridge to automate the fluidic handling steps required to carry out a gene expression study of the human leukemia cell line (K562). The fully integrated microfluidic device consists of microfluidic pumps/mixers, fluid channels, reagent chambers, and a DNA microarray silicon chip. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated into the cartridge to provide pumping of liquid solutions. The device was completely self-contained: no external pressure sources, fluid storage, mechanical pumps, mixers, or valves were necessary for fluid manipulation, thus eliminating possible sample contamination and simplifying device operation. Fluidic experiments were performed to study the on-chip washing efficiency and uniformity. A single-color transcriptional analysis of K562 cells with a series of calibration controls (spiked-in controls) to characterize this new platform with regard to sensitivity, specificity, and dynamic range was performed. The device detected sample RNAs with a concentration as low as 0.375 pM. Experiment also showed that the performance of the integrated microfluidic device is comparable with the conventional hybridization chambers with manual operations, indicating that the on-chip fluidic handling (washing and reaction) is highly efficient and can be automated with no loss of performance. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluidic handling steps in genomic analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app