Journal Article
Multicenter Study
Randomized Controlled Trial
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial.

Circulation 2006 March 29
BACKGROUND: Changes in conventional lipid risk factors with gemfibrozil treatment only partially explain the reductions in coronary heart disease (CHD) events experienced by men in the Veterans Affairs High-Density Lipoprotein Intervention Trial (VA-HIT). We examined whether measurement of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) particle subclasses provides additional information relative to CHD risk reduction.

METHODS AND RESULTS: This is a prospective nested case-control study of 364 men with a new CHD event (nonfatal myocardial infarction or cardiac death) during a 5.1-year (median) follow-up and 697 age-matched controls. Nuclear magnetic resonance (NMR) spectroscopy was used to quantify levels of LDL and HDL particle subclasses and mean particle sizes in plasma obtained at baseline and after 7 months of treatment with gemfibrozil or placebo. Odds ratios for a 1-SD increment of each lipoprotein variable were calculated with adjusted logistic regression models. Gemfibrozil treatment increased LDL size and lowered numbers of LDL particles (-5%) while raising numbers of HDL particles (10%) and small HDL subclass particles (21%). Concentrations of these LDL and HDL particles achieved with gemfibrozil were significant, independent predictors of new CHD events. For total LDL and HDL particles, odds ratios predicting CHD benefit were 1.28 (95% CI, 1.12 to 1.47) and 0.71 (95% CI, 0.61 to 0.81), respectively. Mean LDL and HDL particle sizes were not associated with CHD events.

CONCLUSIONS: The effects of gemfibrozil on NMR-measured LDL and HDL particle subclasses, which are not reflected by conventional lipoprotein cholesterol measures, help to explain the demonstrated benefit of this therapy in patients with low HDL cholesterol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app