A functional association between merlin and HEI10, a cell cycle regulator

M Grönholm, T Muranen, G G Toby, T Utermark, C O Hanemann, E A Golemis, O Carpén
Oncogene 2006 July 27, 25 (32): 4389-98
Merlin and ezrin are homologous proteins with opposite effects on neoplastic growth. Merlin is a tumor suppressor inactivated in the neurofibromatosis 2 disease, whereas upregulated ezrin expression is associated with increased malignancy. Merlin's tumor suppressor mechanism is not known, although participation in cell cycle regulation has been suggested. To characterize merlin's biological activities, we screened for molecules that would interact with merlin but not ezrin. We identified the cyclin B-binding protein and cell cycle regulator HEI10 as a novel merlin-binding partner. The interaction is mediated by the alpha-helical domain in merlin and the coiled-coil domain in HEI10 and requires conformational opening of merlin. The two proteins show partial subcellular colocalization, which depends on cell cycle stage and cell adhesion. Comparison of Schwann cells and schwannoma cultures demonstrated that the distribution of HEI10 depends on merlin expression. In transfected cells, a constitutively open merlin construct affected HEI10 protein integrity. These results link merlin to the cell cycle control machinery and may help to understand its tumor suppressor function.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"