EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Measurement of dye diffusion in scattering tissue phantoms using dual-wavelength low-coherence interferometry.

We demonstrate low-coherence interferometry (LCI) for dye diffusion measurements in scattering tissue phantoms. The diffusion coefficient of a phthalocyanine dye in 1.5% agar gel containing scattering Intralipid was measured using a dual-wavelength interfero-meter. One wavelength was matched to the absorption peak of the dye at 675 nm. The other, 805 nm, was not affected by the dye, and was used to correct for varying sample scattering as a function of depth, assuming a constant ratio between scattering at the two wavelengths. The same wavelength dependence of scattering is assumed for the entire sample, but no a priori knowledge about the amount of scattering is needed. The dye diffusion coefficient was estimated by fitting a mathematical model of the interferometer signal to the measured LCI envelope. We compare results obtained using both a constant-scattering and a depth-resolved-scattering approach to determine the sample scattering. The presented method provides robust estimation of the diffusion coefficient when spatial resolution in determining the depth-resolved scattering is varied. Results indicate that the method is valid for samples having continuous spatial variations in the scattering coefficient over lengths as short as the coherence length of the probing light. The method allows in situ characterization of diffusion in scattering media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app