Add like
Add dislike
Add to saved papers

Host-guest complexation of neutral red with macrocyclic host molecules: contrasting pK(a) shifts and binding affinities for cucurbit[7]uril and beta-cyclodextrin.

The photophysical properties of the phenazine-based dye neutral red were investigated in aqueous solution in the presence of the macrocyclic host molecule cucurbit[7]uril (CB7) using ground-state absorption as well as steady-state and time-resolved fluorescence measurements. The results are contrasted to those previously obtained for beta-cyclodextrin (beta-CD; Singh et al. J. Phys. Chem. A 2004, 108, 1465). Both the neutral (NR) and cationic (NRH+) forms of the dye formed inclusion complexes with CB7, with the larger binding constant for the latter (K = 6.5 x 10(3) M(-1) versus 6.0 x 10(5) M(-1)). This result differed from that for beta-CD, where only the neutral form of the dye was reported to undergo sizable inclusion complex formation. From the difference in binding constants and the pK(a) value of protonated neutral red in the absence of CB7 (6.8), an increased pK(a) value of the dye when complexed by CB7 was projected (approximately 8.8). This shift differed again from the behavior of the dye with beta-CD, where a decreased pK(a) value (ca. 6.1) was reported. The photophysical properties of both NR and NRH+ forms showed significant changes in the presence of CB7. Fluorescence anisotropy studies indicated that the inclusion complexes of both forms of the dye rotate as a whole, giving rotational relaxation times much larger than that expected for the free dye in aqueous solution. The thermodynamic parameters for the NRH+.CB7 complex were investigated in temperature-dependent binding studies, suggesting an entropic driving force for complexation related to desolvation of the cation and the removal of high-energy water molecules from the CB7 cavity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app