JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Left lateralized white matter microstructure accounts for individual differences in reading ability and disability.

Diffusion tensor imaging (DTI) was used to investigate the association between variation in white matter microstructure and individual differences in reading skill within children. Unlike previous DTI studies of reading, our sample examined children in both the average reading range as well as several children in the performance range of reading disability (RD). Results replicate previous findings of a strong correlation between fractional anisotropy (FA) values in a left temporo-parietal white matter region and standardized reading scores of typically developing children. Furthermore, FA values in this same region accounted for differences between children scoring in the average range and children scoring in the RD range, suggesting that the role of white matter tract microstructure is best characterized as an extreme range on a continuum of typical variation. Furthermore, significant correlations between working memory and frontal white matter tract regions were present in this same population, yet were demonstrated to be independent of the relationships found between reading and more posterior regions. Results form a "correlational double dissociation" that demonstrates domain specificity in the influence of white matter tract structures to individual differences in cognitive performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app