Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder.

Dorsal anterior cingulate cortex (dACC) has been found to function abnormally in attention deficit hyperactivity disorder (ADHD) patients in several former functional MRI (fMRI) studies. Resting-state low-frequency fluctuations (LFFs) of blood oxygen level-dependent (BOLD) fMRI signals have been proved to be quite informative. This study used resting-state LFFs to investigate the resting-state functional connectivity pattern differences of dACC in adolescents with and without ADHD. As compared to the controls, the ADHD patients exhibited more significant resting-state functional connectivities with the dACC in bilateral dACC, bilateral thalamus, bilateral cerebellum, bilateral insula and bilateral brainstem (pons). No brain region in the controls was found to exhibit more significant resting-state functional connectivity with the dACC. We suggest these abnormally more significant functional connectivities in the ADHD patients may indicate the abnormality of autonomic control functions in them.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app