Notch signaling is required to maintain all neural stem cell populations—irrespective of spatial or temporal niche

Tania O Alexson, Seiji Hitoshi, Brenda L Coles, Alan Bernstein, Derek van der Kooy
Developmental Neuroscience 2006, 28 (1-2): 34-48
Recently, Notch signaling has been reported to underscore the ability of neural stem cells (NSCs) to self-renew. Utilizing mice deficient in presenilin-1(PS1), we asked whether the function of Notch signaling in NSC maintenance was conserved. At embryonic day 14.5, all NSCs--both similar (cortex-, ganglionic eminence- and hindbrain-derived) and distinct (retinal stem cell)--require Notch signaling in a gene-dosage-sensitive manner to undergo expansionary symmetric divisions, as assessed by the clonal, in vitro neurosphere assay. Within the adult, however, Notch signaling modulates cell cycle time in order to ensure brain-derived NSCs retain their self-renewal property. At face value, the effects in the embryo and adult appear different. We propose potential hypotheses, including the ability of cell cycle to modify the mode of division, in order to resolve this discrepancy. Regardless, these findings demonstrate that PS1, and presumably Notch signaling, is required to maintain all NSCs.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"