Add like
Add dislike
Add to saved papers

Role of hepatic AMPK activation in glucose metabolism and dexamethasone-induced regulation of AMPK expression.

To elucidate the role of AMPK in hepatic glucose metabolism, dominant negative (DN), constitutively active (CA) forms of the AMPKalpha1 subunit and control vector LacZ were overexpressed by means of adenovirus-mediated gene transfer. Five days after virus injection, hepatic AMPK activity was five-fold higher in CA mice than in DN mice. DN mice were apparently glucose intolerant with a higher fasting plasma glucose level (DN 82.3+/-0.7mg/dl, CA 42.5+/-4.8mg/dl and LacZ 54.3+/-2.4mg/dl). PEPCK, a gluconeogenic key enzyme, mRNA was increased 131.54% and 48.92% in DN mice compared to that of CA and LacZ, respectively. Thus, hepatic AMPK activation plays a role in the suppression of gluconeogenesis and this might be the cause of decreased fasting plasma glucose level in CA mice. We also investigated the effects of dexamethasone on hepatic AMPK expression and activity in rat liver, mice liver, as well as primary cultured hepatocytes. Subcutaneously injecting mice with dexamethasone (1mg/day) for 5 days significantly upregulated hepatic AMPKalpha1 and alpha2 expressions. Similarly, the treatment of primary cultured rat hepatocytes with dexamethasone (1microM) increased expression of the AMPKalpha1 subunit, AICAR-induced AMPK phosphorylation and kinase activity. Although increased AMPK expression cannot be attributed to dexamethasone-induced glucose intolerance, taken together our results raise the possibility that AMPK control liver glucose output and its expression in liver might be modulated by various hormones and growth factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app