JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Multiple candidate gene analysis identifies alpha-synuclein as a susceptibility gene for sporadic Parkinson's disease.

Parkinson's disease (PD), one of the most common human neurodegenerative diseases, is characterized by the loss of dopaminergic neurons in the substantia nigra of the midbrain. PD is a complex disorder with multiple genetic and environmental factors influencing disease risk. To identify susceptible genes for sporadic PD, we performed case-control association studies of 268 single nucleotide polymorphisms (SNPs) in 121 candidate genes. In two independent case-control populations, we found that a SNP in alpha-synuclein (SNCA), rs7684318, showed the strongest association with PD (P=5.0 x 10(-10)). Linkage disequilibrium (LD) analysis using 29 SNPs in a region around rs7684318 revealed that the entire SNCA gene lies within a single LD block (D'>0.9) spanning approximately 120 kb. A tight LD group (r2>0.85) of six SNPs, including rs7684318, associated most strongly with PD (P=2.0 x 10(-9)-1.7 x 10(-11)). Haplotype association analysis did not show lower P-values than any single SNP within this group. SNCA is a major component of Lewy bodies, the pathological hallmark of PD. Aggregation of SNCA is thought to play a crucial role in PD. SNCA expression levels tended to be positively correlated with the number of the associated allele in autopsied frontal cortices. These findings establish SNCA as a definite susceptibility gene for sporadic PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app