RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evaluation of artificial neural networks in the classification of primary oesophageal dysmotility.

OBJECTIVE: Artificial neural networks (ANNs) can rapidly analyse large data sets and exploit complex mathematical relationships between variables. We investigated the feasibility of utilizing ANNs in the recognition and objective classification of primary oesophageal motor disorders, based on stationary oesophageal manometry recordings.

MATERIAL AND METHODS: One hundred swallow sequences, including 80 that were representative of various oesophageal motor disorders and 20 of normal motility, were identified from 54 patients (34 F; median age 59 years). Two different ANN techniques were trained to recognize normal and abnormal swallow sequences using mathematical features of pressure wave patterns both with (ANN(+)) and without (ANN(-)) the inclusion of standard manometric criteria. The ANNs were cross-validated and their performances were compared to the diagnoses obtained by standard visual evaluation of the manometric data.

RESULTS: Interestingly, ANN(-), rather than ANN(+), programs gave the best overall performance, correctly classifying >80% of swallow sequences (achalasia 100%, nutcracker oesophagus 100%, ineffective oesophageal motility 80%, diffuse oesophageal spasm 60%, normal motility 80%). The standard deviation of the distal oesophageal pressure and propagated pressure wave activity were the most influential variables in the ANN(-) and ANN(+) programs, respectively.

CONCLUSIONS: ANNs represent a potentially important tool that can be used to improve the classification and diagnosis of primary oesophageal motility disorders.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app