JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Response properties of dural nociceptors in relation to headache.

Single-unit electrophysiological recording studies have examined the activity of sensory neurons in the trigeminal ganglion that innervate the intracranial meninges to better understand their possible role in headache. A key question is whether the meningeal sensory neurons are similar to nociceptive neurons in other tissues or, alternatively, whether they have unique properties that might be of significance for headache pathogenesis and drug therapy. Such studies have indeed found that the intracranial dura is innervated by neurons that exhibit properties characteristic of nociceptors in other tissues, including chemosensitivity and sensitization. This sensitization, consisting of an enhanced responsiveness to mechanical stimuli, might be relevant to symptoms that are characteristic of certain headaches that indicate the presence of an exaggerated intracranial mechanosensitivity. Studies that examined whether the anti-migraine agent sumatriptan might inhibit this sensitization (in addition to its well-known inhibition of neurotransmitter release) found that it had no inhibitory effect but rather produced a calcium-dependent discharge, which might account for the initial worsening of headache that can follow sumatriptan administration. In studies that examined the effects of vasodilator agents, nitroprusside produced mixed effects on mechanosensitivity, whereas calciton gene-related peptide (CGRP) had no effect on either spontaneous or mechanically evoked discharge. These results call into question the role of vasodilation in headache and suggest that the role of CGRP in headache may be through its action as a central neurotransmitter rather than through vasodilation and activation of meningeal nociceptors. In general, studies of meningeal sensory neurons have not found evidence of unique properties that distinguish them from nociceptive neurons in other tissues. Ultimately the distinctive clinical characteristics of headache may prove to be related not so much to any differences in the intrinsic molecular or cellular properties of the meningeal sensory neurons but rather to the distinctive properties of the tissue that they innervate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app