JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area.

The microbial biomass, basal respiration, and substrate utilization pattern in a copper mining wasteland of red soil area, southern China, were investigated, and indicated that soil microflora were obviously affected by heavy metals. Microbial biomass and basal respiration were negatively affected by comparatively high heavy metal levels. Two important microbial ecophysiological parameters, namely, the microbial biomass C (C(mic))/microbial biomass N (N(mic)) ratio and the metabolic quotient (qCO(2)) were significantly correlated to heavy metal stress. There was a significant decrease in the C(mic)/N(mic) ratio and an increase in the metabolic quotient with increasing metal concentration. Multivariate analysis of Biolog data for sole carbon source utilization pattern demonstrated that heavy metal pollution had a significant impact on microbial community structure and functional diversity. All the results showed that soil microbiological parameters could have great potential as sensitive, effective, and liable indicators of the stresses or perturbations in soils of mining ecosystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app