EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Arbitrary waveform coded excitation using bipolar square wave pulsers in medical ultrasound.

This paper presents a new coded excitation scheme that efficiently synthesizes codes for arbitrary waveforms using a bipolar square wave pulser. In a coded excitation system, pulse compression is performed to restore the axial resolution. In order to maintain low range sidelobes, the system needs to transmit signals that have smooth spectra. However, such a transmitter requires the generation of arbitrary waveforms and, therefore, is more expensive. In other words, a trade-off is necessary between the compression performance and the transmitter cost. Here we propose a method that preserves the low-cost advantage of a bipolar pulser while achieving approximately the same compression performance as an arbitrary waveform generator. The key idea of the proposed method is the conversion of a nonbinary code (i.e., requiring an arbitrary waveform generator) with good compression performance into a binary code (i.e., requiring only a bipolar pulser) by code translation and code tuning. The code translation is implemented by sending the nonbinary code into a virtual one-bit, sigma-delta modulator, and the code tuning involves minimizing the root-mean-square error between the resultant binary code and the original nonbinary code by sequential and iterative tuning while taking the transducer response into account. Tukey-windowed chirps are known to have good compression performance. Such chirps of different durations (16, 20, and 24 micros), all with a taper ratio of 0.15, a center frequency of 2.5 MHz, and an equivalent bandwidth of 1.5 MHz, were converted into binary Tukey-windowed chirps that were compared with pseudochirps (i.e., direct binary approximations of the original chirp) over the same spectral band. The bit rate was 40 MHz. Simulation results show that the use of binary Tukey-windowed chirps can reduce the code duration by 20.6% or the peak sidelobe level by 6 dB compared to the commonly used pseudochirps. Experimental results obtained under the same settings were in agreement with the simulations. Our results demonstrate that arbitrary waveform coded excitation can be realized using bipolar square wave pulsers for applications in medical ultrasound.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app