Add like
Add dislike
Add to saved papers

TGF-beta1 immobilized tri-co-polymer for articular cartilage tissue engineering.

Tri-co-polymer with composition of gelatin, hyaluronic acid and chondroitin-6-sulfate has been used to mimic the cartilage extracellular matrix as scaffold for cartilage tissue engineering. In this study, we try to immobilize TGF-beta1 onto the surface of the tri-co-polymer sponge to suppress the undesired differentiation during the cartilage growth in vitro. The scaffold was synthesized with a pore size in a range of 300-500 microm. TGF-beta1 was immobilized on the surface of the tri-co-polymer scaffold with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent. Tri-co-polymer scaffolds with and without TGF-beta1 were seeded with porcine chondrocytes and cultured in a spinner flask for 2, 4, and 6 weeks. The chondrocytes were characterized by the methods of immunohistochemical staining with anti-type II collagen and anti-S-100 protein monoclonal antibody, and RT-PCR. After culturing for 4 weeks, chondrocytes showed positive in S-100 protein, Alcian blue, and type II collagen for the scaffold with TGF-beta1 immobilization. There is no observed type I and type X collagen expression in the scaffolds from the observation of RT-PCR. In addition, the scaffold without TGF-beta1 immobilization, type X collagen, can be detected after cultured for 2 weeks. Type I collagen was progressively expressed after 4 weeks. These results can conclude that TGF-beta1 immobilized scaffold can suppress chondrocytes toward prehypertrophic chondrocytes and osteolineage cells. The tri-co-polymer sponge with TGF-beta1 immobilization should have a great potential in cartilage tissue engineering in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app