Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Glucocorticoids suppress proteoglycan production by human tenocytes.

Acta Orthopaedica 2005 December
BACKGROUND: The role of glucocortiocid injection therapy in spontaneous tendon rupture is controversial. We hypothesized that glucocorticoids suppress proteoglycan production in tendon and studied the in vitro effects of dexamethasone and triamcinolone on proteoglycan production by cultured human tenocytes.

MATERIAL AND METHODS: We obtained primary cultures of human tenocytes from explants of healthy human patellar tendon. The human tenocytes were treated with 1 microM dexamethasone or 1 microM triamcinolone. The amount of proteoglycan production was measured by 35S-sulfate incorporation assay and compared with control cultures. The reversibility of the effect of dexamethasone by co-incubation with 10 ng platelet-derived growth factor (PDGFBB) was also tested.

RESULTS: Treatment with 1 microM triamcinolone reduced the amount of 35S-sulfate incorporation to 80% of control cultures (p = 0.007), whereas 1 microM dexamethasone reduced it to 72% (p = 0.01). Co-incubation of 10 ng/mL PDGFBB with 1 microM dexamethasone returned the 35S-sulfate incorporation to a level that was significantly higher than for dexamethasone treatment alone (108%; p = 0.01).

INTERPRETATION: Glucocorticoids suppressed proteoglycan production in cultured human tenocytes. The suppression by dexamethasone was reversed by simultaneous addition of PDGFBB. Suppressed proteoglycan production may affect the viscoelastic properties of tendon and increase the risk of spontaneous rupture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app