JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activity of the hSPCA1 Golgi Ca2+ pump is essential for Ca2+-mediated Ca2+ response and cell viability in Darier disease.

Journal of Cell Science 2006 Februrary 16
Keratinocyte differentiation, adhesion and motility are directed by extracellular Ca2+ concentration increases, which in turn increase intracellular Ca2+ levels. Normal keratinocytes, in contrast to most non-excitable cells, require Ca2+ release from both Golgi and endoplasmic reticulum Ca2+ stores for efficient Ca2+ signaling. Dysfunction of the Golgi human secretory pathway Ca2+-ATPase hSPCA1, encoded by ATP2C1, abrogates Ca2+ signaling and causes the acantholytic genodermatosis, Hailey-Hailey disease. We have examined the role of the endoplasmic reticulum Ca2+ store, established and maintained by the sarcoplasmic and endoplasmic reticulum Ca2+-ATPase SERCA2 encoded by ATP2A2, in Ca2+ signaling. Although previous studies have shown acute SERCA2 inactivation to abrogate Ca2+ signaling, we find that chronic inactivation of ATP2A2 in keratinocytes from patients with the similar acantholytic genodermatosis, Darier disease, does not impair the response to raised extracellular Ca2+ levels. This normal response is due to a compensatory upregulation of hSPCA1, as inactivating ATP2C1 expression with siRNA blocks the response to raised extracellular Ca2+ concentrations in both normal and Darier keratinocytes. ATP2C1 inactivation also diminishes Darier disease keratinocyte viability, suggesting that compensatory ATP2C1 upregulation maintains viability and partially compensates for defective endoplasmic reticulum Ca2+-ATPase in Darier disease keratinocytes. Keratinocytes thus are unique among mammalian cells in their ability to use the Golgi Ca2+ store to mediate Ca2+ signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app