A study on blood-brain barrier ultrastructural changes induced by cerebral hypoperfusion of different stages

Jin-Song Wu, Xian-Cheng Chen, Hong Chen, Yu-Quan Shi
Neurological Research 2006, 28 (1): 50-8

OBJECTIVES: To evaluate the ultrastructural changes in the blood-brain barrier (BBB) induced by cerebral hypoperfusion of different stages, which may predispose the brain to the formation of vasogenic edema and hemorrhage under cerebral luxury perfusion.

METHODS: Twenty cerebral steal models with left neck arteriovenous fistula (AVF) were surgically created in Wistar's rats, leading to a noninfarctional reduction in the cerebral blood flow (CBF) by between 25 and 50%, resulting in cerebral hypoperfusion in the AVF side for 3 days (acute stage), 3 weeks (subacute stage) and 3 months (chronic stage), respectively. Another six sham-operated models were made in age-matched rats as control. The BBB ultrastructural changes were assessed by transmission electron microscopy. Ridit analysis was conducted to compare the positive ratio of ultrastructural changes among multiple groups.

RESULTS: Electron microscopy demonstrated no ultrastructural change at the acute stage, however, at the subacute stage, slight vacuolar degeneration was found in the astrocytic foot process layer encircling the capillaries; furthermore, at the chronic stage, the astrocytic foot processes expressed marked vacuolization associated with the adjacent astrocytic degeneration. Meanwhile, in both capillary endothelium and basal lamina layers, no abnormal ultrastructures similar to those in the astrocytic foot processes layer were identified. After cerebral luxury perfusion took place, BBB was disrupted where astrocytic foot processes vacuolization was most distinguished.

CONCLUSION: Astrocytes generate ultrastructural abnormality as a result of chronic cerebral hypoperfusion. Astrocytic foot process vacuolization, which constitutes the major ultrastructural change in the BBB, is the extension of the degeneration of astrocyte body. It is inferred that BBB is prone to structure weakness and function instability, which forms the morphological basis of cerebral luxury perfusion.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"